
Computer Science �– Evolution of Computers in Society 20 

Early Computers
and Computing
Technology

1936
The Turing Machine

1942–1946
First Electronic Computers:
Colossus and ENIAC

1947
Solid State Transistors

1953
Invention of High Level
Programming Languages

1958
Integrated Circuits

1973
Mobile Phones and
Interconnected Computers

1977
First modern PC –
Apple II

1989
The World Wide Web

2000–2020
Cloud Computing
and the Smart Phone

1947
Solid State Transistors
Learning Outcomes addressed in this section are listed below.

1.16	 compare two different user interfaces and identify different design decisions that

shape the user experience

2.3	 implement modular design to develop hardware or software modules that perform

a specific function

2.11	 describe the different components within a computer and the function of those

components

2.12	 describe the different types of logic gates and explain how they can be arranged

into larger units to perform more complex tasks

2.13	 describe the rationale for using the binary number system in digital computing

and how to convert between binary, hexadecimal and decimal

2.14	 describe the difference between digital and analogue input

When other Learning Outcomes are addressed, for instance in classroom activities or

through related online resources, the LO is numbered.

Computer Science �– Evolution of Computers in Society 21 

Early Computers
and Computing
Technology

1936
The Turing Machine

1942–1946
First Electronic Computers:
Colossus and ENIAC

1947
Solid State Transistors

1953
Invention of High Level
Programming Languages

1958
Integrated Circuits

1973
Mobile Phones and
Interconnected Computers

1977
First modern PC –
Apple II

1989
The World Wide Web

2000–2020
Cloud Computing
and the Smart Phone

The digital revolution, it can be argued, began in 1947 with the invention of the solid

state transistor. John Bardeen, Walter Brattain, and William Shockley, working for Bell

Labs in the USA, developed the revolutionary semiconductor device which can act as a

switch, turning tiny electric currents on or off, and also as an amplifier of electric

current, boosting electric currents.

The operation and function of modern solid state transistors (using n-type and p-type

semiconductors) are explained in this series of videos on basic electronic components.

Why Binary?

When transistors work as switches they can act as a computer’s memory. When a

switch is turned ON it is effectively storing the number 1 (high voltage). When a switch

is turned OFF it is effectively storing the number 0 (low voltage). Transistors therefore

operate in 2 distinct states and since there are only 2 digits it is called a binary system.

BInary digiTS are better known by their shortened name of BITS.

�� 8 bits makes up 1 byte

8 bits can represent 256 (2^8) numbers and hence 256 characters on your keyboard.

The old system for representing text and numbers was ASCII but the Unicode

system is now the most widely used. Check out the Universal Transformation

Format (UTF) codes for emojis.

�� 1000 bytes is about 1 KiloByte

1 KB (kB also used) is exactly 1024 bytes. This is 2^10 bytes. The base of 2 represents

the fact that a bit is either ON or OFF. 1 KB is a couple of short paragraphs of text.

�� 1000KB is about 1 MegaByte

1 MB is 1024KB or 1,048,576 bytes. This is 2^20 bytes. MP3 audio is roughly 1MB of

sound per minute.

�� 1000MB is about 1 GigaByte

1 GB is 2^30 bytes or approximately 1 billion bytes. PC RAM is measured blocks of

GB

�� 1000 GB is about 1 TeraByte.

1 TB is a million million bytes or to be exact 2^40 bytes. Terabyte hard drives and

the growth of cloud storage have made this unit of measurement part of common,

everyday language.

Learn about basic

electronic components

(resistors, diodes,

transistors, &c) and an

electronics timeline.

From

explainthatstuff.com.

LO 2.14

Representing data using

Braille Binary, Decimal

and Hexadecimal.

From the CS Field Guide

(Tim Bell)

Check out this interactive

Stanford University site on

measuring memory.

What do you think of its

User Interface? Can you

locate a better one? Why is

it a better UI?

LO 1.16

LO 2.13

https://www.youtube.com/watch?v=7ukDKVHnac4&t=1s
http://unicode.org/emoji/charts/full-emoji-list.html#263a
http://unicode.org/emoji/charts/full-emoji-list.html#263a
http://www.explainthatstuff.com/electronics.html
http://www.explainthatstuff.com/electronics.html
http://www.explainthatstuff.com/electronics.html
http://www.explainthatstuff.com/electronics.html
http://www.explainthatstuff.com/electronics.html
http://www.csfieldguide.org.nz/en/chapters/data-representation.html
http://www.csfieldguide.org.nz/en/chapters/data-representation.html
http://www.csfieldguide.org.nz/en/chapters/data-representation.html
https://web.stanford.edu/class/cs101/bits-gigabytes.html
https://web.stanford.edu/class/cs101/bits-gigabytes.html

Computer Science �– Evolution of Computers in Society 22 

Early Computers
and Computing
Technology

1936
The Turing Machine

1942–1946
First Electronic Computers:
Colossus and ENIAC

1947
Solid State Transistors

1953
Invention of High Level
Programming Languages

1958
Integrated Circuits

1973
Mobile Phones and
Interconnected Computers

1977
First modern PC –
Apple II

1989
The World Wide Web

2000–2020
Cloud Computing
and the Smart Phone

Logic Gates are the building blocks of computer systems. They are made up chiefly of

transistors and enable computer systems to make decisions using Boolean Algebra. The

functionality of 6 logic gates is described below (NOT, OR, AND, NAND, NOR and XOR.)

Logic Gate NOT OR AND
Symbol

A OUT A
B OUT A

B OUT

Functionality
(Truth Table)

OUTPUT
A not A
0 1
1 0

INPUTS OUTPUT
A B A or B
0 0 0
0 1 1
1 0 1
1 1 1

INPUTS OUTPUT
A B A and B
0 0 0
0 1 0
1 0 0
1 1 1

Logic Gate NAND (not AND) NOR (not OR)
Symbol A

B OUT A
B OUT

Truth Table INPUTS OUTPUT
A B not (A and B)
0 0 1
0 1 1
1 0 1
1 1 0

INPUTS OUTPUT
A B not (A or B)
0 0 1
0 1 0
1 0 0
1 1 0

Logic Gate XOR (exclusive OR)
Symbol A

B OUT

Truth Table INPUTS OUTPUT
A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

From simple logic gates described below, the components of all computers can be

constructed, such as flip-flops and memory components all the way up to ALUs

and registers. In fact Arithmetic Logic Units (ALUs) comprise a vital part of the

Central Processing Unit (CPU) of a computer. Logical and mathematical operations

are performed here. The inputs to the ALU are controlled within the CPU by the

control unit.

Analog v Digital is both very simple to understand at an abstract level and extremely

complicated at the micro and quantum level. Explore the differences between analog

and digital with this 5 minute  Techquickie video. Microprocessors such as the

Arduino and Microbit enable both digital and analog processing. The revolution in

semiconductors, which began in 1947 with the invention at Bell Labs of the solid state

transistor, was in many ways the birth of the digital era: of 1’s and 0’s. Before that, our

world was driven by analog technology. Now we live in both an analog and digital

world.

 Take the Crash Course

Video on Logic Gates

From the Crash Course

Series on YouTube (Carri

Anne Philbin)

 Watch how to build

logic gates and full adders

using dominoes, plus an

explanation of binary

arithmetic.

LO 2.3

Interact with Logic Gates

to explore how they work.

The NAND gate can be

made up from the output

of an AND gate fed into

the input of a NOT gate.

Use the simulator above to

demonstrate its operation.

Use this or a similar

interactive simulator to

build a half-adder for the

class activity.

 An animated and

comprehensive look

at how computers add

numbers.

LO 2.12

 Watch the NCCA video

on battery testing using a

microbit, then implement

in class, to explore Digital

and Analog signals.

Visit ncca.ie (computer

science) or compsci.ie to

view similar videos.

LO 2.14

LO 3.11–3.13

https://www.bbc.com/education/guides/zc4bb9q/revision/2
https://www.youtube.com/watch?v=btgAUdbj85E
https://www.youtube.com/watch?v=gI-qXk7XojA
https://www.youtube.com/watch?v=gI-qXk7XojA
https://www.youtube.com/watch?v=lNuPy-r1GuQ
https://www.youtube.com/watch?v=lNuPy-r1GuQ
https://www.youtube.com/watch?v=lNuPy-r1GuQ
https://www.youtube.com/watch?v=lNuPy-r1GuQ
https://www.youtube.com/watch?v=lNuPy-r1GuQ
https://sciencedemos.org.uk/logic_gates.php
https://sciencedemos.org.uk/logic_gates.php
https://www.youtube.com/watch?v=VBDoT8o4q00
https://www.youtube.com/watch?v=VBDoT8o4q00
https://vimeo.com/265200584
https://vimeo.com/265200584
https://vimeo.com/265200584
https://vimeo.com/265200584
https://vimeo.com/265200584

Computer Science �– Evolution of Computers in Society 23 

Early Computers
and Computing
Technology

1936
The Turing Machine

1942–1946
First Electronic Computers:
Colossus and ENIAC

1947
Solid State Transistors

1953
Invention of High Level
Programming Languages

1958
Integrated Circuits

1973
Mobile Phones and
Interconnected Computers

1977
First modern PC –
Apple II

1989
The World Wide Web

2000–2020
Cloud Computing
and the Smart Phone

 Classroom Activity

Design your own half-adder in some language you have learned, for example

Python or Scratch.

What is a half-adder? The basic building blocks of an ALU are simple logic gates

and one of the most fundamental elements of an ALU is the half-adder. The half

adder takes two inputs in the form of bits, and outputs the sum and the carry-over.

The addition and the Truth Table are shown below.

Addition of 2 bits INPUTS OUTPUT

A + B = CS A B Sum (S) Carry (C)
0 + 0 = 00 0 0 0 0
0 + 1 = 01 0 1 1 0
1 + 0 = 01 1 0 1 0
1 + 1 = 10 1 1 0 1

The activity requires a minimum group of 3.

COMPONENT BUILDER

The role is to write functions in a programming language for the basic logic gates:

AND, OR, XOR, NAND and NOR gates. The function should take 2 inputs (A,B) and

output the result from the gate. The half-adder program will use these logic gate

functions to simulate a half-adder.

HALF-ADDER DESIGNER

The role is to research half adder designs on the internet. With one of these

designs, design an abstract model and algorithm to implement a half-adder design

in your chosen programming language. The logic gate functions will be used

within the overall model.

TESTER AND EVALUATOR

The responsibility is to ensure the half-adder outputs the correct values for all

possible inputs. So, a program to perform such a test is to be designed. For example,

a nested loop which generates every permutation of A and B in the Truth Table,

which then feeds into the half-adder program. The program should also be tested

for correct functionality and evaluated for efficiency and its Computational

Thinking level. (See the html NCCA resource for evaluating CT criteria in block-

based code.)

 Half-Adder Activity

The activity addresses a

vast number of LOs. In

particular:

�� Designing and

Developing LOs in

Strand 1

(LO 1.19–1.23)

�� Abstraction LOs in

Strand 2

(LO 2.1–2.4)

�� ALT3 Modelling and

Simulation LOs in

Strand 3

(LO 3.8–3.9)

http://www.circuitstoday.com/half-adder-and-full-adder
https://curriculumonline.ie/getmedia/6ef159bf-b7bb-451e-a14c-ad7f3021466a/CT-challenge-with-Scratch.html
https://curriculumonline.ie/Senior-cycle/Senior-Cycle-Subjects/Computer-Science/Strands-and-learning-outcomes

